Papers
Topics
Authors
Recent
2000 character limit reached

Bringing PDEs to JAX with forward and reverse modes automatic differentiation (2309.07137v1)

Published 31 Aug 2023 in cs.MS, cs.LG, cs.NA, and math.NA

Abstract: Partial differential equations (PDEs) are used to describe a variety of physical phenomena. Often these equations do not have analytical solutions and numerical approximations are used instead. One of the common methods to solve PDEs is the finite element method. Computing derivative information of the solution with respect to the input parameters is important in many tasks in scientific computing. We extend JAX automatic differentiation library with an interface to Firedrake finite element library. High-level symbolic representation of PDEs allows bypassing differentiating through low-level possibly many iterations of the underlying nonlinear solvers. Differentiating through Firedrake solvers is done using tangent-linear and adjoint equations. This enables the efficient composition of finite element solvers with arbitrary differentiable programs. The code is available at github.com/IvanYashchuk/jax-firedrake.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.