Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Masked Transformer for Electrocardiogram Classification (2309.07136v3)

Published 31 Aug 2023 in eess.SP, cs.AI, cs.LG, and stat.AP

Abstract: Electrocardiogram (ECG) is one of the most important diagnostic tools in clinical applications. With the advent of advanced algorithms, various deep learning models have been adopted for ECG tasks. However, the potential of Transformer for ECG data has not been fully realized, despite their widespread success in computer vision and natural language processing. In this work, we present Masked Transformer for ECG classification (MTECG), a simple yet effective method which significantly outperforms recent state-of-the-art algorithms in ECG classification. Our approach adapts the image-based masked autoencoders to self-supervised representation learning from ECG time series. We utilize a lightweight Transformer for the encoder and a 1-layer Transformer for the decoder. The ECG signal is split into a sequence of non-overlapping segments along the time dimension, and learnable positional embeddings are added to preserve the sequential information. We construct the Fuwai dataset comprising 220,251 ECG recordings with a broad range of diagnoses, annotated by medical experts, to explore the potential of Transformer. A strong pre-training and fine-tuning recipe is proposed from the empirical study. The experiments demonstrate that the proposed method increases the macro F1 scores by 3.4%-27.5% on the Fuwai dataset, 9.9%-32.0% on the PTB-XL dataset, and 9.4%-39.1% on a multicenter dataset, compared to the alternative methods. We hope that this study could direct future research on the application of Transformer to more ECG tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: