Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Beyond original Research Articles Categorization via NLP (2309.07020v1)

Published 13 Sep 2023 in cs.CL

Abstract: This work proposes a novel approach to text categorization -- for unknown categories -- in the context of scientific literature, using Natural Language Processing techniques. The study leverages the power of pre-trained LLMs, specifically SciBERT, to extract meaningful representations of abstracts from the ArXiv dataset. Text categorization is performed using the K-Means algorithm, and the optimal number of clusters is determined based on the Silhouette score. The results demonstrate that the proposed approach captures subject information more effectively than the traditional arXiv labeling system, leading to improved text categorization. The approach offers potential for better navigation and recommendation systems in the rapidly growing landscape of scientific research literature.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)