Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Regular Representations of Uniform TC^0 (2309.06926v1)

Published 13 Sep 2023 in cs.LO and math.LO

Abstract: The circuit complexity class DLOGTIME-uniform AC0 is known to be a modest subclass of DLOGTIME-uniform TC0. The weakness of AC0 is caused by the fact that AC0 is not closed under restricting AC0-computable queries into simple subsequences of the input. Analogously, in descriptive complexity, the logics corresponding to DLOGTIME-uniform AC0 do not have the relativization property and hence they are not regular. This weakness of DLOGTIME-uniform AC0 has been elaborated in the line of research on the Crane Beach Conjecture. The conjecture (which was refuted by Barrington, Immerman, Lautemann, Schweikardt and Th{\'e}rien) was that if a language L has a neutral letter, then L can be defined in first-order logic with the collection of all numerical built-in relations, if and only if L can be already defined in FO with order. In the first part of this article we consider logics in the range of AC0 and TC0. First we formulate a combinatorial criterion for a cardinality quantifier C_S implying that all languages in DLOGTIME-uniform TC0 can be defined in FO(C_S). For instance, this criterion is satisfied by C_S if S is the range of some polynomial with positive integer coefficients of degree at least two. In the second part of the paper we first adapt the key properties of abstract logics to accommodate built-in relations. Then we define the regular interior R-int(L) and regular closure R-cl(L), of a logic L, and show that the Crane Beach Conjecture can be interpreted as a statement concerning the regular interior of first-order logic with built-in relations B. We show that if B={+}, or B contains only unary relations besides the order, then R-int(FO_B) collapses to FO with order. In contrast, our results imply that if B contains the order and the range of a polynomial of degree at least two, then R-cl(FO_B) includes all languages in DLOGTIME-uniform TC0.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube