Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Native Language Identification with Big Bird Embeddings (2309.06923v1)

Published 13 Sep 2023 in cs.CL

Abstract: Native Language Identification (NLI) intends to classify an author's native language based on their writing in another language. Historically, the task has heavily relied on time-consuming linguistic feature engineering, and transformer-based NLI models have thus far failed to offer effective, practical alternatives. The current work investigates if input size is a limiting factor, and shows that classifiers trained using Big Bird embeddings outperform linguistic feature engineering models by a large margin on the Reddit-L2 dataset. Additionally, we provide further insight into input length dependencies, show consistent out-of-sample performance, and qualitatively analyze the embedding space. Given the effectiveness and computational efficiency of this method, we believe it offers a promising avenue for future NLI work.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.