Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A plug-and-play synthetic data deep learning for undersampled magnetic resonance image reconstruction (2309.06681v2)

Published 13 Sep 2023 in eess.IV and cs.AI

Abstract: Magnetic resonance imaging (MRI) plays an important role in modern medical diagnostic but suffers from prolonged scan time. Current deep learning methods for undersampled MRI reconstruction exhibit good performance in image de-aliasing which can be tailored to the specific k-space undersampling scenario. But it is very troublesome to configure different deep networks when the sampling setting changes. In this work, we propose a deep plug-and-play method for undersampled MRI reconstruction, which effectively adapts to different sampling settings. Specifically, the image de-aliasing prior is first learned by a deep denoiser trained to remove general white Gaussian noise from synthetic data. Then the learned deep denoiser is plugged into an iterative algorithm for image reconstruction. Results on in vivo data demonstrate that the proposed method provides nice and robust accelerated image reconstruction performance under different undersampling patterns and sampling rates, both visually and quantitatively.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.