Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Can humans help BERT gain "confidence"? (2309.06580v1)

Published 31 Aug 2023 in cs.CL and cs.AI

Abstract: The advancements in artificial intelligence over the last decade have opened a multitude of avenues for interdisciplinary research. Since the idea of artificial intelligence was inspired by the working of neurons in the brain, it seems pretty practical to combine the two fields and take the help of cognitive data to train AI models. Not only it will help to get a deeper understanding of the technology, but of the brain as well. In this thesis, I conduct novel experiments to integrate cognitive features from the Zurich Cognitive Corpus (ZuCo) (Hollenstein et al., 2018) with a transformer-based encoder model called BERT. I show how EEG and eye-tracking features from ZuCo can help to increase the performance of the NLP model. I confirm the performance increase with the help of a robustness-checking pipeline and derive a word-EEG lexicon to use in benchmarking on an external dataset that does not have any cognitive features associated with it. Further, I analyze the internal working mechanism of BERT and explore a potential method for model explainability by correlating it with a popular model-agnostic explainability framework called LIME (Ribeiro et al., 2016). Finally, I discuss the possible directions to take this research forward.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)