Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

IBAFormer: Intra-batch Attention Transformer for Domain Generalized Semantic Segmentation (2309.06282v1)

Published 12 Sep 2023 in cs.CV

Abstract: Domain generalized semantic segmentation (DGSS) is a critical yet challenging task, where the model is trained only on source data without access to any target data. Despite the proposal of numerous DGSS strategies, the generalization capability remains limited in CNN architectures. Though some Transformer-based segmentation models show promising performance, they primarily focus on capturing intra-sample attentive relationships, disregarding inter-sample correlations which can potentially benefit DGSS. To this end, we enhance the attention modules in Transformer networks for improving DGSS by incorporating information from other independent samples in the same batch, enriching contextual information, and diversifying the training data for each attention block. Specifically, we propose two alternative intra-batch attention mechanisms, namely mean-based intra-batch attention (MIBA) and element-wise intra-batch attention (EIBA), to capture correlations between different samples, enhancing feature representation and generalization capabilities. Building upon intra-batch attention, we introduce IBAFormer, which integrates self-attention modules with the proposed intra-batch attention for DGSS. Extensive experiments demonstrate that IBAFormer achieves SOTA performance in DGSS, and ablation studies further confirm the effectiveness of each introduced component.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube