Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ELRA: Exponential learning rate adaption gradient descent optimization method (2309.06274v1)

Published 12 Sep 2023 in cs.LG and math.OC

Abstract: We present a novel, fast (exponential rate adaption), ab initio (hyper-parameter-free) gradient based optimizer algorithm. The main idea of the method is to adapt the learning rate $\alpha$ by situational awareness, mainly striving for orthogonal neighboring gradients. The method has a high success and fast convergence rate and does not rely on hand-tuned parameters giving it greater universality. It can be applied to problems of any dimensions n and scales only linearly (of order O(n)) with the dimension of the problem. It optimizes convex and non-convex continuous landscapes providing some kind of gradient. In contrast to the Ada-family (AdaGrad, AdaMax, AdaDelta, Adam, etc.) the method is rotation invariant: optimization path and performance are independent of coordinate choices. The impressive performance is demonstrated by extensive experiments on the MNIST benchmark data-set against state-of-the-art optimizers. We name this new class of optimizers after its core idea Exponential Learning Rate Adaption - ELRA. We present it in two variants c2min and p2min with slightly different control. The authors strongly believe that ELRA will open a completely new research direction for gradient descent optimize.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.