Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elucidating the solution space of extended reverse-time SDE for diffusion models (2309.06169v3)

Published 12 Sep 2023 in cs.LG and cs.CV

Abstract: Sampling from Diffusion Models can alternatively be seen as solving differential equations, where there is a challenge in balancing speed and image visual quality. ODE-based samplers offer rapid sampling time but reach a performance limit, whereas SDE-based samplers achieve superior quality, albeit with longer iterations. In this work, we formulate the sampling process as an Extended Reverse-Time SDE (ER SDE), unifying prior explorations into ODEs and SDEs. Theoretically, leveraging the semi-linear structure of ER SDE solutions, we offer exact solutions and approximate solutions for VP SDE and VE SDE, respectively. Based on the approximate solution space of the ER SDE, referred to as one-step prediction errors, we yield mathematical insights elucidating the rapid sampling capability of ODE solvers and the high-quality sampling ability of SDE solvers. Additionally, we unveil that VP SDE solvers stand on par with their VE SDE counterparts. Based on these findings, leveraging the dual advantages of ODE solvers and SDE solvers, we devise efficient high-quality samplers, namely ER-SDE-Solvers. Experimental results demonstrate that ER-SDE-Solvers achieve state-of-the-art performance across all stochastic samplers while maintaining efficiency of deterministic samplers. Specifically, on the ImageNet $128\times128$ dataset, ER-SDE-Solvers obtain 8.33 FID in only 20 function evaluations. Code is available at \href{https://github.com/QinpengCui/ER-SDE-Solver}{https://github.com/QinpengCui/ER-SDE-Solver}

Citations (4)

Summary

We haven't generated a summary for this paper yet.