Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Measuring Catastrophic Forgetting in Cross-Lingual Transfer Paradigms: Exploring Tuning Strategies (2309.06089v3)

Published 12 Sep 2023 in cs.CL and cs.LG

Abstract: The cross-lingual transfer is a promising technique to solve tasks in less-resourced languages. In this empirical study, we compare two fine-tuning approaches combined with zero-shot and full-shot learning approaches for LLMs in a cross-lingual setting. As fine-tuning strategies, we compare parameter-efficient adapter methods with fine-tuning of all parameters. As cross-lingual transfer strategies, we compare the intermediate-training (\textit{IT}) that uses each language sequentially and cross-lingual validation (\textit{CLV}) that uses a target language already in the validation phase of fine-tuning. We assess the success of transfer and the extent of catastrophic forgetting in a source language due to cross-lingual transfer, i.e., how much previously acquired knowledge is lost when we learn new information in a different language. The results on two different classification problems, hate speech detection and product reviews, each containing datasets in several languages, show that the \textit{IT} cross-lingual strategy outperforms \textit{CLV} for the target language. Our findings indicate that, in the majority of cases, the \textit{CLV} strategy demonstrates superior retention of knowledge in the base language (English) compared to the \textit{IT} strategy, when evaluating catastrophic forgetting in multiple cross-lingual transfers.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube