Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Computationally Efficient Bi-level Coordination Framework for CAVs at Unsignalized Intersections (2309.05959v2)

Published 12 Sep 2023 in eess.SY and cs.SY

Abstract: In this paper, we investigate cooperative vehicle coordination for connected and automated vehicles (CAVs) at unsignalized intersections. To support high traffic throughput while reducing computational complexity, we present a novel collision region model and decompose the optimal coordination problem into two sub-problems: \textit{centralized} priority scheduling and \textit{distributed} trajectory planning. Then, we propose a bi-level coordination framework which includes: (i) a Monte Carlo Tree Search (MCTS)-based high-level priority scheduler aims to find high-quality passing orders to maximize traffic throughput, and (ii) a priority-based low-level trajectory planner that generates optimal collision-free control inputs. Simulation results demonstrate that our bi-level strategy achieves near-optimal coordination performance, comparable to state-of-the-art centralized strategies, and significantly outperform the traffic signal control systems in terms of traffic throughput. Moreover, our approach exhibits good scalability, with computational complexity scaling linearly with the number of vehicles. Video demonstrations can be found online at \url{https://youtu.be/WYAKFMNnQfs}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.