Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Studying the impacts of pre-training using ChatGPT-generated text on downstream tasks (2309.05668v1)

Published 2 Sep 2023 in cs.CL and cs.AI

Abstract: In recent times, significant advancements have been witnessed in the field of LLMs, particularly with the emergence of LLMs that are trained on vast amounts of data extracted from internet archives. These LLMs, such as ChatGPT, have become widely accessible, allowing users to generate text for various purposes including articles, essays, jokes, and poetry. Given that LLMs are trained on a diverse range of text sources, encompassing platforms like Reddit and Twitter, it is foreseeable that future training datasets will also incorporate text generated by previous iterations of the models themselves. In light of this development, our research aims to investigate the influence of artificial text in the pre-training phase of LLMs. Specifically, we conducted a comparative analysis between a LLM, RoBERTa, pre-trained using CNN/DailyMail news articles, and ChatGPT, which employed the same articles for its training and evaluated their performance on three downstream tasks as well as their potential gender bias, using sentiment analysis as a metric. Through a series of experiments, we demonstrate that the utilization of artificial text during pre-training does not have a significant impact on either the performance of the models in downstream tasks or their gender bias. In conclusion, our findings suggest that the inclusion of text generated by LLMs in their own pre-training process does not yield substantial effects on the subsequent performance of the models in downstream tasks or their potential gender bias.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.