Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributional Probabilistic Model Checking (2309.05584v3)

Published 11 Sep 2023 in cs.LO

Abstract: Probabilistic model checking can provide formal guarantees on the behavior of stochastic models relating to a wide range of quantitative properties, such as runtime, energy consumption or cost. But decision making is typically with respect to the expected value of these quantities, which can mask important aspects of the full probability distribution such as the possibility of high-risk, low-probability events or multimodalities. We propose a distributional extension of probabilistic model checking, applicable to discrete-time Markov chains (DTMCs) and Markov decision processes (MDPs). We formulate distributional queries, which can reason about a variety of distributional measures, such as variance, value-at-risk or conditional value-at-risk, for the accumulation of reward until a co-safe linear temporal logic formula is satisfied. For DTMCs, we propose a method to compute the full distribution to an arbitrary level of precision, based on a graph analysis and forward analysis of the model. For MDPs, we approximate the optimal policy with respect to expected value or conditional value-at-risk using distributional value iteration. We implement our techniques and investigate their performance and scalability across a range of benchmark models. Experimental results demonstrate that our techniques can be successfully applied to check various distributional properties of large probabilistic models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ingy Elsayed-Aly (4 papers)
  2. David Parker (58 papers)
  3. Lu Feng (69 papers)

Summary

We haven't generated a summary for this paper yet.