Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Bayesian Control of Port-Hamiltonian Systems (2309.04678v1)

Published 9 Sep 2023 in eess.SY and cs.SY

Abstract: Port-Hamiltonian theory is an established way to describe nonlinear physical systems widely used in various fields such as robotics, energy management, and mechanical engineering. This has led to considerable research interest in the control of Port-Hamiltonian systems, resulting in numerous model-based control techniques. However, the performance and stability of the closed-loop typically depend on the quality of the PH model, which is often difficult to obtain using first principles. We propose a Gaussian Processes (GP) based control approach for Port-Hamiltonian systems (GPC-PHS) by leveraging gathered data. The Bayesian characteristics of GPs enable the creation of a distribution encompassing all potential Hamiltonians instead of providing a singular point estimate. Using this uncertainty quantification, the proposed approach takes advantage of passivity-based robust control with interconnection and damping assignment to establish probabilistic stability guarantees.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Thomas Beckers (26 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.