Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Zero-Sum Linear Quadratic Games with Improved Sample Complexity and Last-Iterate Convergence (2309.04272v3)

Published 8 Sep 2023 in eess.SY, cs.GT, cs.LG, and cs.SY

Abstract: Zero-sum Linear Quadratic (LQ) games are fundamental in optimal control and can be used (i)~as a dynamic game formulation for risk-sensitive or robust control and (ii)~as a benchmark setting for multi-agent reinforcement learning with two competing agents in continuous state-control spaces. In contrast to the well-studied single-agent linear quadratic regulator problem, zero-sum LQ games entail solving a challenging nonconvex-nonconcave min-max problem with an objective function that lacks coercivity. Recently, Zhang et al. showed that an~$\epsilon$-Nash equilibrium (NE) of finite horizon zero-sum LQ games can be learned via nested model-free Natural Policy Gradient (NPG) algorithms with poly$(1/\epsilon)$ sample complexity. In this work, we propose a simpler nested Zeroth-Order (ZO) algorithm improving sample complexity by several orders of magnitude and guaranteeing convergence of the last iterate. Our main results are two-fold: (i) in the deterministic setting, we establish the first global last-iterate linear convergence result for the nested algorithm that seeks NE of zero-sum LQ games; (ii) in the model-free setting, we establish a~$\widetilde{\mathcal{O}}(\epsilon{-2})$ sample complexity using a single-point ZO estimator. For our last-iterate convergence results, our analysis leverages the Implicit Regularization (IR) property and a new gradient domination condition for the primal function. Our key improvements in the sample complexity rely on a more sample-efficient nested algorithm design and a finer control of the ZO natural gradient estimation error utilizing the structure endowed by the finite-horizon setting.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.