Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Offline Recommender System Evaluation under Unobserved Confounding (2309.04222v1)

Published 8 Sep 2023 in cs.LG, cs.IR, and stat.ML

Abstract: Off-Policy Estimation (OPE) methods allow us to learn and evaluate decision-making policies from logged data. This makes them an attractive choice for the offline evaluation of recommender systems, and several recent works have reported successful adoption of OPE methods to this end. An important assumption that makes this work is the absence of unobserved confounders: random variables that influence both actions and rewards at data collection time. Because the data collection policy is typically under the practitioner's control, the unconfoundedness assumption is often left implicit, and its violations are rarely dealt with in the existing literature. This work aims to highlight the problems that arise when performing off-policy estimation in the presence of unobserved confounders, specifically focusing on a recommendation use-case. We focus on policy-based estimators, where the logging propensities are learned from logged data. We characterise the statistical bias that arises due to confounding, and show how existing diagnostics are unable to uncover such cases. Because the bias depends directly on the true and unobserved logging propensities, it is non-identifiable. As the unconfoundedness assumption is famously untestable, this becomes especially problematic. This paper emphasises this common, yet often overlooked issue. Through synthetic data, we empirically show how na\"ive propensity estimation under confounding can lead to severely biased metric estimates that are allowed to fly under the radar. We aim to cultivate an awareness among researchers and practitioners of this important problem, and touch upon potential research directions towards mitigating its effects.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.