Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 55 tok/s
Gemini 2.5 Flash 173 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

DBsurf: A Discrepancy Based Method for Discrete Stochastic Gradient Estimation (2309.03974v1)

Published 7 Sep 2023 in cs.LG

Abstract: Computing gradients of an expectation with respect to the distributional parameters of a discrete distribution is a problem arising in many fields of science and engineering. Typically, this problem is tackled using Reinforce, which frames the problem of gradient estimation as a Monte Carlo simulation. Unfortunately, the Reinforce estimator is especially sensitive to discrepancies between the true probability distribution and the drawn samples, a common issue in low sampling regimes that results in inaccurate gradient estimates. In this paper, we introduce DBsurf, a reinforce-based estimator for discrete distributions that uses a novel sampling procedure to reduce the discrepancy between the samples and the actual distribution. To assess the performance of our estimator, we subject it to a diverse set of tasks. Among existing estimators, DBsurf attains the lowest variance in a least squares problem commonly used in the literature for benchmarking. Furthermore, DBsurf achieves the best results for training variational auto-encoders (VAE) across different datasets and sampling setups. Finally, we apply DBsurf to build a simple and efficient Neural Architecture Search (NAS) algorithm with state-of-the-art performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.