Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Mapping of CNNs on multi-core RRAM-based CIM architectures (2309.03805v4)

Published 7 Sep 2023 in cs.AR

Abstract: RRAM-based multi-core systems improve the energy efficiency and performance of CNNs. Thereby, the distributed parallel execution of convolutional layers causes critical data dependencies that limit the potential speedup. This paper presents synchronization techniques for parallel inference of convolutional layers on RRAM-based CIM architectures. We propose an architecture optimization that enables efficient data exchange and discuss the impact of different architecture setups on the performance. The corresponding compiler algorithms are optimized for high speedup and low memory consumption during CNN inference. We achieve more than 99% of the theoretical acceleration limit with a marginal data transmission overhead of less than 4% for state-of-the-art CNN benchmarks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.