Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Daunting Dilemma with Sentence Encoders: Success on Standard Benchmarks, Failure in Capturing Basic Semantic Properties (2309.03747v1)

Published 7 Sep 2023 in cs.CL

Abstract: In this paper, we adopted a retrospective approach to examine and compare five existing popular sentence encoders, i.e., Sentence-BERT, Universal Sentence Encoder (USE), LASER, InferSent, and Doc2vec, in terms of their performance on downstream tasks versus their capability to capture basic semantic properties. Initially, we evaluated all five sentence encoders on the popular SentEval benchmark and found that multiple sentence encoders perform quite well on a variety of popular downstream tasks. However, being unable to find a single winner in all cases, we designed further experiments to gain a deeper understanding of their behavior. Specifically, we proposed four semantic evaluation criteria, i.e., Paraphrasing, Synonym Replacement, Antonym Replacement, and Sentence Jumbling, and evaluated the same five sentence encoders using these criteria. We found that the Sentence-Bert and USE models pass the paraphrasing criterion, with SBERT being the superior between the two. LASER dominates in the case of the synonym replacement criterion. Interestingly, all the sentence encoders failed the antonym replacement and jumbling criteria. These results suggest that although these popular sentence encoders perform quite well on the SentEval benchmark, they still struggle to capture some basic semantic properties, thus, posing a daunting dilemma in NLP research.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.