Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

DiffDefense: Defending against Adversarial Attacks via Diffusion Models (2309.03702v1)

Published 7 Sep 2023 in cs.LG, cs.CR, and cs.CV

Abstract: This paper presents a novel reconstruction method that leverages Diffusion Models to protect machine learning classifiers against adversarial attacks, all without requiring any modifications to the classifiers themselves. The susceptibility of machine learning models to minor input perturbations renders them vulnerable to adversarial attacks. While diffusion-based methods are typically disregarded for adversarial defense due to their slow reverse process, this paper demonstrates that our proposed method offers robustness against adversarial threats while preserving clean accuracy, speed, and plug-and-play compatibility. Code at: https://github.com/HondamunigePrasannaSilva/DiffDefence.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.