Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning of Generalizable and Interpretable Knowledge in Grid-Based Reinforcement Learning Environments (2309.03651v1)

Published 7 Sep 2023 in cs.AI

Abstract: Understanding the interactions of agents trained with deep reinforcement learning is crucial for deploying agents in games or the real world. In the former, unreasonable actions confuse players. In the latter, that effect is even more significant, as unexpected behavior cause accidents with potentially grave and long-lasting consequences for the involved individuals. In this work, we propose using program synthesis to imitate reinforcement learning policies after seeing a trajectory of the action sequence. Programs have the advantage that they are inherently interpretable and verifiable for correctness. We adapt the state-of-the-art program synthesis system DreamCoder for learning concepts in grid-based environments, specifically, a navigation task and two miniature versions of Atari games, Space Invaders and Asterix. By inspecting the generated libraries, we can make inferences about the concepts the black-box agent has learned and better understand the agent's behavior. We achieve the same by visualizing the agent's decision-making process for the imitated sequences. We evaluate our approach with different types of program synthesizers based on a search-only method, a neural-guided search, and a LLM fine-tuned on code.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.