Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Spatial encoding of BOLD fMRI time series for categorizing static images across visual datasets: A pilot study on human vision (2309.03590v1)

Published 7 Sep 2023 in eess.IV, cs.AI, cs.CV, and eess.SP

Abstract: Functional MRI (fMRI) is widely used to examine brain functionality by detecting alteration in oxygenated blood flow that arises with brain activity. In this study, complexity specific image categorization across different visual datasets is performed using fMRI time series (TS) to understand differences in neuronal activities related to vision. Publicly available BOLD5000 dataset is used for this purpose, containing fMRI scans while viewing 5254 images of diverse categories, drawn from three standard computer vision datasets: COCO, ImageNet and SUN. To understand vision, it is important to study how brain functions while looking at different images. To achieve this, spatial encoding of fMRI BOLD TS has been performed that uses classical Gramian Angular Field (GAF) and Markov Transition Field (MTF) to obtain 2D BOLD TS, representing images of COCO, Imagenet and SUN. For classification, individual GAF and MTF features are fed into regular CNN. Subsequently, parallel CNN model is employed that uses combined 2D features for classifying images across COCO, Imagenet and SUN. The result of 2D CNN models is also compared with 1D LSTM and Bi-LSTM that utilizes raw fMRI BOLD signal for classification. It is seen that parallel CNN model outperforms other network models with an improvement of 7% for multi-class classification. Clinical relevance- The obtained result of this analysis establishes a baseline in studying how differently human brain functions while looking at images of diverse complexities.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.