Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A cutting-surface consensus approach for distributed robust optimization of multi-agent systems (2309.03519v2)

Published 7 Sep 2023 in math.OC, cs.MA, cs.SY, and eess.SY

Abstract: A novel and fully distributed optimization method is proposed for the distributed robust convex program (DRCP) over a time-varying unbalanced directed network under the uniformly jointly strongly connected (UJSC) assumption. Firstly, a tractable approximated DRCP (ADRCP) is introduced by discretizing the semi-infinite constraints into a finite number of inequality constraints and restricting the right-hand side of the constraints with a positive parameter. This problem is iteratively solved by a distributed projected gradient algorithm proposed in this paper, which is based on epigraphic reformulation and subgradient projected algorithms. Secondly, a cutting-surface consensus approach is proposed for locating an approximately optimal consensus solution of the DRCP with guaranteed feasibility. This approach is based on iteratively approximating the DRCP by successively reducing the restriction parameter of the right-hand constraints and populating the cutting-surfaces into the existing finite set of constraints. Thirdly, to ensure finite-time termination of the distributed optimization, a distributed termination algorithm is developed based on consensus and zeroth-order stopping conditions under UJSC graphs. Fourthly, it is proved that the cutting-surface consensus approach terminates finitely and yields a feasible and approximate optimal solution for each agent. Finally, the effectiveness of the approach is illustrated through a numerical example.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)