Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tensor Networks for Solving Realistic Time-independent Boltzmann Neutron Transport Equation (2309.03347v2)

Published 6 Sep 2023 in math.NA and cs.NA

Abstract: Tensor network techniques, known for their low-rank approximation ability that breaks the curse of dimensionality, are emerging as a foundation of new mathematical methods for ultra-fast numerical solutions of high-dimensional Partial Differential Equations (PDEs). Here, we present a mixed Tensor Train (TT)/Quantized Tensor Train (QTT) approach for the numerical solution of time-independent Boltzmann Neutron Transport equations (BNTEs) in Cartesian geometry. Discretizing a realistic three-dimensional (3D) BNTE by (i) diamond differencing, (ii) multigroup-in-energy, and (iii) discrete ordinate collocation leads to huge generalized eigenvalue problems that generally require a matrix-free approach and large computer clusters. Starting from this discretization, we construct a TT representation of the PDE fields and discrete operators, followed by a QTT representation of the TT cores and solving the tensorized generalized eigenvalue problem in a fixed-point scheme with tensor network optimization techniques. We validate our approach by applying it to two realistic examples of 3D neutron transport problems, currently solved by the PARallel TIme-dependent SN (PARTISN) solver. We demonstrate that our TT/QTT method, executed on a standard desktop computer, leads to a yottabyte compression of the memory storage, and more than 7500 times speedup with a discrepancy of less than 1e-5 when compared to the PARTISN solution.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.