Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Blink: Link Local Differential Privacy in Graph Neural Networks via Bayesian Estimation (2309.03190v2)

Published 6 Sep 2023 in cs.LG and cs.CR

Abstract: Graph neural networks (GNNs) have gained an increasing amount of popularity due to their superior capability in learning node embeddings for various graph inference tasks, but training them can raise privacy concerns. To address this, we propose using link local differential privacy over decentralized nodes, enabling collaboration with an untrusted server to train GNNs without revealing the existence of any link. Our approach spends the privacy budget separately on links and degrees of the graph for the server to better denoise the graph topology using Bayesian estimation, alleviating the negative impact of LDP on the accuracy of the trained GNNs. We bound the mean absolute error of the inferred link probabilities against the ground truth graph topology. We then propose two variants of our LDP mechanism complementing each other in different privacy settings, one of which estimates fewer links under lower privacy budgets to avoid false positive link estimates when the uncertainty is high, while the other utilizes more information and performs better given relatively higher privacy budgets. Furthermore, we propose a hybrid variant that combines both strategies and is able to perform better across different privacy budgets. Extensive experiments show that our approach outperforms existing methods in terms of accuracy under varying privacy budgets.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.