Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the Line-Separable Unit-Disk Coverage and Related Problems (2309.03162v2)

Published 6 Sep 2023 in cs.CG and cs.DS

Abstract: Given a set $P$ of $n$ points and a set $S$ of $m$ disks in the plane, the disk coverage problem asks for a smallest subset of disks that together cover all points of $P$. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of $P$ by a line $\ell$. We present an $O((n+m)\log(n+m))$ time algorithm for the problem. This improves the previously best result of $O(nm+ n\log n)$ time. Our techniques also solve the line-constrained version of the problem, where centers of all disks of $S$ are located on a line $\ell$ while points of $P$ can be anywhere in the plane. Our algorithm runs in $O((n+m)\log (m+ n)+m \log m\log n)$ time, which improves the previously best result of $O(nm\log(m+n))$ time. In addition, our results lead to an algorithm of $O(n3\log n)$ time for a half-plane coverage problem (given $n$ half-planes and $n$ points, find a smallest subset of half-planes covering all points); this improves the previously best algorithm of $O(n4\log n)$ time. Further, if all half-planes are lower ones, our algorithm runs in $O(n\log n)$ time while the previously best algorithm takes $O(n2\log n)$ time.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.