A multilinear Nyström algorithm for low-rank approximation of tensors in Tucker format (2309.02877v2)
Abstract: The Nystr\"om method offers an effective way to obtain low-rank approximation of SPD matrices, and has been recently extended and analyzed to nonsymmetric matrices (leading to the generalized Nystr\"om method). It is a randomized, single-pass, streamable, cost-effective, and accurate alternative to the randomized SVD, and it facilitates the computation of several matrix low-rank factorizations. In this paper, we take these advancements a step further by introducing a higher-order variant of Nystr\"om's methodology tailored to approximating low-rank tensors in the Tucker format: the multilinear Nystr\"om technique. We show that, by introducing appropriate small modifications in the formulation of the higher-order method, strong stability properties can be obtained. This algorithm retains the key attributes of the generalized Nystr\"om method, positioning it as a viable substitute for the randomized higher-order SVD algorithm.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.