Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Critical Review of Common Log Data Sets Used for Evaluation of Sequence-based Anomaly Detection Techniques (2309.02854v1)

Published 6 Sep 2023 in cs.LG

Abstract: Log data store event execution patterns that correspond to underlying workflows of systems or applications. While most logs are informative, log data also include artifacts that indicate failures or incidents. Accordingly, log data are often used to evaluate anomaly detection techniques that aim to automatically disclose unexpected or otherwise relevant system behavior patterns. Recently, detection approaches leveraging deep learning have increasingly focused on anomalies that manifest as changes of sequential patterns within otherwise normal event traces. Several publicly available data sets, such as HDFS, BGL, Thunderbird, OpenStack, and Hadoop, have since become standards for evaluating these anomaly detection techniques, however, the appropriateness of these data sets has not been closely investigated in the past. In this paper we therefore analyze six publicly available log data sets with focus on the manifestations of anomalies and simple techniques for their detection. Our findings suggest that most anomalies are not directly related to sequential manifestations and that advanced detection techniques are not required to achieve high detection rates on these data sets.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.