Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Prompt-based Node Feature Extractor for Few-shot Learning on Text-Attributed Graphs (2309.02848v1)

Published 6 Sep 2023 in cs.SI

Abstract: Text-attributed Graphs (TAGs) are commonly found in the real world, such as social networks and citation networks, and consist of nodes represented by textual descriptions. Currently, mainstream machine learning methods on TAGs involve a two-stage modeling approach: (1) unsupervised node feature extraction with pre-trained LLMs (PLMs); and (2) supervised learning using Graph Neural Networks (GNNs). However, we observe that these representations, which have undergone large-scale pre-training, do not significantly improve performance with a limited amount of training samples. The main issue is that existing methods have not effectively integrated information from the graph and downstream tasks simultaneously. In this paper, we propose a novel framework called G-Prompt, which combines a graph adapter and task-specific prompts to extract node features. First, G-Prompt introduces a learnable GNN layer (\emph{i.e.,} adaptor) at the end of PLMs, which is fine-tuned to better capture the masked tokens considering graph neighborhood information. After the adapter is trained, G-Prompt incorporates task-specific prompts to obtain \emph{interpretable} node representations for the downstream task. Our experiment results demonstrate that our proposed method outperforms current state-of-the-art (SOTA) methods on few-shot node classification. More importantly, in zero-shot settings, the G-Prompt embeddings can not only provide better task interpretability than vanilla PLMs but also achieve comparable performance with fully-supervised baselines.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube