Operations on Boolean and Alternating Finite Automata (2309.02748v1)
Abstract: We examine the complexity of basic regular operations on languages represented by Boolean and alternating finite automata. We get tight upper bounds m+n and m+n+1 for union, intersection, and difference, 2m+n and 2m+n+1 for concatenation, 2n+n and 2n+n+1 for square, m and m+1 for left quotient, 2m and 2m+1 for right quotient. We also show that in both models, the complexity of complementation and symmetric difference is n and m+n, respectively, while the complexity of star and reversal is 2n. All our witnesses are described over a unary or binary alphabets, and whenever we use a binary alphabet, it is always optimal.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.