Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Improved Upper Bound on the Rate-Distortion Function of Images (2309.02574v1)

Published 5 Sep 2023 in eess.IV

Abstract: Recent work has shown that Variational Autoencoders (VAEs) can be used to upper-bound the information rate-distortion (R-D) function of images, i.e., the fundamental limit of lossy image compression. In this paper, we report an improved upper bound on the R-D function of images implemented by (1) introducing a new VAE model architecture, (2) applying variable-rate compression techniques, and (3) proposing a novel \ourfunction{} to stabilize training. We demonstrate that at least 30\% BD-rate reduction w.r.t. the intra prediction mode in VVC codec is achievable, suggesting that there is still great potential for improving lossy image compression. Code is made publicly available at https://github.com/duanzhiihao/lossy-vae.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.