Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards User Guided Actionable Recourse (2309.02517v1)

Published 5 Sep 2023 in cs.LG and cs.CY

Abstract: Machine Learning's proliferation in critical fields such as healthcare, banking, and criminal justice has motivated the creation of tools which ensure trust and transparency in ML models. One such tool is Actionable Recourse (AR) for negatively impacted users. AR describes recommendations of cost-efficient changes to a user's actionable features to help them obtain favorable outcomes. Existing approaches for providing recourse optimize for properties such as proximity, sparsity, validity, and distance-based costs. However, an often-overlooked but crucial requirement for actionability is a consideration of User Preference to guide the recourse generation process. In this work, we attempt to capture user preferences via soft constraints in three simple forms: i) scoring continuous features, ii) bounding feature values and iii) ranking categorical features. Finally, we propose a gradient-based approach to identify User Preferred Actionable Recourse (UP-AR). We carried out extensive experiments to verify the effectiveness of our approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.