Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Towards User Guided Actionable Recourse (2309.02517v1)

Published 5 Sep 2023 in cs.LG and cs.CY

Abstract: Machine Learning's proliferation in critical fields such as healthcare, banking, and criminal justice has motivated the creation of tools which ensure trust and transparency in ML models. One such tool is Actionable Recourse (AR) for negatively impacted users. AR describes recommendations of cost-efficient changes to a user's actionable features to help them obtain favorable outcomes. Existing approaches for providing recourse optimize for properties such as proximity, sparsity, validity, and distance-based costs. However, an often-overlooked but crucial requirement for actionability is a consideration of User Preference to guide the recourse generation process. In this work, we attempt to capture user preferences via soft constraints in three simple forms: i) scoring continuous features, ii) bounding feature values and iii) ranking categorical features. Finally, we propose a gradient-based approach to identify User Preferred Actionable Recourse (UP-AR). We carried out extensive experiments to verify the effectiveness of our approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.