Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting File Context for Source Code Summarization (2309.02326v1)

Published 5 Sep 2023 in cs.SE and cs.AI

Abstract: Source code summarization is the task of writing natural language descriptions of source code. A typical use case is generating short summaries of subroutines for use in API documentation. The heart of almost all current research into code summarization is the encoder-decoder neural architecture, and the encoder input is almost always a single subroutine or other short code snippet. The problem with this setup is that the information needed to describe the code is often not present in the code itself -- that information often resides in other nearby code. In this paper, we revisit the idea of ``file context'' for code summarization. File context is the idea of encoding select information from other subroutines in the same file. We propose a novel modification of the Transformer architecture that is purpose-built to encode file context and demonstrate its improvement over several baselines. We find that file context helps on a subset of challenging examples where traditional approaches struggle.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Aakash Bansal (22 papers)
  2. Chia-Yi Su (9 papers)
  3. Collin McMillan (38 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.