Papers
Topics
Authors
Recent
2000 character limit reached

Revisiting File Context for Source Code Summarization (2309.02326v1)

Published 5 Sep 2023 in cs.SE and cs.AI

Abstract: Source code summarization is the task of writing natural language descriptions of source code. A typical use case is generating short summaries of subroutines for use in API documentation. The heart of almost all current research into code summarization is the encoder-decoder neural architecture, and the encoder input is almost always a single subroutine or other short code snippet. The problem with this setup is that the information needed to describe the code is often not present in the code itself -- that information often resides in other nearby code. In this paper, we revisit the idea of ``file context'' for code summarization. File context is the idea of encoding select information from other subroutines in the same file. We propose a novel modification of the Transformer architecture that is purpose-built to encode file context and demonstrate its improvement over several baselines. We find that file context helps on a subset of challenging examples where traditional approaches struggle.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube