Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Fairness of Exposure in Dynamic Recommendation (2309.02322v1)

Published 5 Sep 2023 in cs.IR

Abstract: Exposure bias is a well-known issue in recommender systems where the exposure is not fairly distributed among items in the recommendation results. This is especially problematic when bias is amplified over time as a few items (e.g., popular ones) are repeatedly over-represented in recommendation lists and users' interactions with those items will amplify bias towards those items over time resulting in a feedback loop. This issue has been extensively studied in the literature in static recommendation environment where a single round of recommendation result is processed to improve the exposure fairness. However, less work has been done on addressing exposure bias in a dynamic recommendation setting where the system is operating over time, the recommendation model and the input data are dynamically updated with ongoing user feedback on recommended items at each round. In this paper, we study exposure bias in a dynamic recommendation setting. Our goal is to show that existing bias mitigation methods that are designed to operate in a static recommendation setting are unable to satisfy fairness of exposure for items in long run. In particular, we empirically study one of these methods and show that repeatedly applying this method fails to fairly distribute exposure among items in long run. To address this limitation, we show how this method can be adapted to effectively operate in a dynamic recommendation setting and achieve exposure fairness for items in long run. Experiments on a real-world dataset confirm that our solution is superior in achieving long-term exposure fairness for the items while maintaining the recommendation accuracy.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.