Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Graph-Based Automatic Feature Selection for Multi-Class Classification via Mean Simplified Silhouette (2309.02272v1)

Published 5 Sep 2023 in cs.LG

Abstract: This paper introduces a novel graph-based filter method for automatic feature selection (abbreviated as GB-AFS) for multi-class classification tasks. The method determines the minimum combination of features required to sustain prediction performance while maintaining complementary discriminating abilities between different classes. It does not require any user-defined parameters such as the number of features to select. The methodology employs the Jeffries-Matusita (JM) distance in conjunction with t-distributed Stochastic Neighbor Embedding (t-SNE) to generate a low-dimensional space reflecting how effectively each feature can differentiate between each pair of classes. The minimum number of features is selected using our newly developed Mean Simplified Silhouette (abbreviated as MSS) index, designed to evaluate the clustering results for the feature selection task. Experimental results on public data sets demonstrate the superior performance of the proposed GB-AFS over other filter-based techniques and automatic feature selection approaches. Moreover, the proposed algorithm maintained the accuracy achieved when utilizing all features, while using only $7\%$ to $30\%$ of the features. Consequently, this resulted in a reduction of the time needed for classifications, from $15\%$ to $70\%$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.