Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Worst-Case Complexity of Symmetric Strategy Improvement (2309.02223v1)

Published 5 Sep 2023 in cs.GT

Abstract: Symmetric strategy improvement is an algorithm introduced by Schewe et al. (ICALP 2015) that can be used to solve two-player games on directed graphs such as parity games and mean payoff games. In contrast to the usual well-known strategy improvement algorithm, it iterates over strategies of both players simultaneously. The symmetric version solves the known worst-case examples for strategy improvement quickly, however its worst-case complexity remained open. We present a class of worst-case examples for symmetric strategy improvement on which this symmetric version also takes exponentially many steps. Remarkably, our examples exhibit this behaviour for any choice of improvement rule, which is in contrast to classical strategy improvement where hard instances are usually hand-crafted for a specific improvement rule. We present a generalized version of symmetric strategy iteration depending less rigidly on the interplay of the strategies of both players. However, it turns out it has the same shortcomings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tom van Dijk (10 papers)
  2. Georg Loho (28 papers)
  3. Matthew Maat (3 papers)

Summary

We haven't generated a summary for this paper yet.