Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generalized Simplicial Attention Neural Networks (2309.02138v2)

Published 5 Sep 2023 in cs.LG, cs.AI, and math.AT

Abstract: Graph machine learning methods excel at leveraging pairwise relations present in the data. However, graphs are unable to fully capture the multi-way interactions inherent in many complex systems. An effective way to incorporate them is to model the data on higher-order combinatorial topological spaces, such as Simplicial Complexes (SCs) or Cell Complexes. For this reason, we introduce Generalized Simplicial Attention Neural Networks (GSANs), novel neural network architectures designed to process data living on simplicial complexes using masked self-attentional layers. Hinging on topological signal processing principles, we devise a series of principled self-attention mechanisms able to process data associated with simplices of various order, such as nodes, edges, triangles, and beyond. These schemes learn how to combine data associated with neighbor simplices of consecutive order in a task-oriented fashion, leveraging on the simplicial Dirac operator and its Dirac decomposition. We also prove that GSAN satisfies two fundamental properties: permutation equivariance and simplicial-awareness. Finally, we illustrate how our approach compares favorably with other simplicial and graph models when applied to several (inductive and transductive) tasks such as trajectory prediction, missing data imputation, graph classification, and simplex prediction.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com