Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks (2309.01945v5)

Published 5 Sep 2023 in cs.LG, cs.AI, and cs.AR

Abstract: Low-bit quantization emerges as one of the most promising compression approaches for deploying deep neural networks on edge devices. Mixed-precision quantization leverages a mixture of bit-widths to unleash the accuracy and efficiency potential of quantized models. However, existing mixed-precision quantization methods rely on simulations in high-performance devices to achieve accuracy and efficiency trade-offs in immense search spaces. This leads to a non-negligible gap between the estimated efficiency metrics and the actual hardware that makes quantized models far away from the optimal accuracy and efficiency, and also causes the quantization process to rely on additional high-performance devices. In this paper, we propose an On-Chip Hardware-Aware Quantization (OHQ) framework, performing hardware-aware mixed-precision quantization on deployed edge devices to achieve accurate and efficient computing. Specifically, for efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator and avoid optimization errors caused by inaccurate simulation. For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario, getting rid of the dependence of the quantization process on high computing power. By synthesizing insights from quantized models and hardware through linear optimization, we can obtain optimized bit-width configurations to achieve outstanding performance on accuracy and efficiency. We evaluate inference accuracy and acceleration with quantization for various architectures and compression ratios on hardware. OHQ achieves 70% and 73% accuracy for ResNet-18 and MobileNetV3, respectively, and can reduce latency by 15~30% compared to INT8 on real deployment.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.