Delegating Data Collection in Decentralized Machine Learning (2309.01837v3)
Abstract: Motivated by the emergence of decentralized ML ecosystems, we study the delegation of data collection. Taking the field of contract theory as our starting point, we design optimal and near-optimal contracts that deal with two fundamental information asymmetries that arise in decentralized ML: uncertainty in the assessment of model quality and uncertainty regarding the optimal performance of any model. We show that a principal can cope with such asymmetry via simple linear contracts that achieve 1-1/e fraction of the optimal utility. To address the lack of a priori knowledge regarding the optimal performance, we give a convex program that can adaptively and efficiently compute the optimal contract. We also study linear contracts and derive the optimal utility in the more complex setting of multiple interactions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.