Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Benchmarking Autoregressive Conditional Diffusion Models for Turbulent Flow Simulation (2309.01745v3)

Published 4 Sep 2023 in cs.LG and physics.flu-dyn

Abstract: Simulating turbulent flows is crucial for a wide range of applications, and machine learning-based solvers are gaining increasing relevance. However, achieving temporal stability when generalizing to longer rollout horizons remains a persistent challenge for learned PDE solvers. In this work, we analyze if fully data-driven fluid solvers that utilize an autoregressive rollout based on conditional diffusion models are a viable option to address this challenge. We investigate accuracy, posterior sampling, spectral behavior, and temporal stability, while requiring that methods generalize to flow parameters beyond the training regime. To quantitatively and qualitatively benchmark the performance of various flow prediction approaches, three challenging 2D scenarios including incompressible and transonic flows, as well as isotropic turbulence are employed. We find that even simple diffusion-based approaches can outperform multiple established flow prediction methods in terms of accuracy and temporal stability, while being on par with state-of-the-art stabilization techniques like unrolling at training time. Such traditional architectures are superior in terms of inference speed, however, the probabilistic nature of diffusion approaches allows for inferring multiple predictions that align with the statistics of the underlying physics. Overall, our benchmark contains three carefully chosen data sets that are suitable for probabilistic evaluation alongside various established flow prediction architectures.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com