Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

T-Stochastic Graphs (2309.01301v2)

Published 4 Sep 2023 in stat.AP and stat.ML

Abstract: Previous statistical approaches to hierarchical clustering for social network analysis all construct an "ultrametric" hierarchy. While the assumption of ultrametricity has been discussed and studied in the phylogenetics literature, it has not yet been acknowledged in the social network literature. We show that "non-ultrametric structure" in the network introduces significant instabilities in the existing top-down recovery algorithms. To address this issue, we introduce an instability diagnostic plot and use it to examine a collection of empirical networks. These networks appear to violate the "ultrametric" assumption. We propose a deceptively simple and yet general class of probabilistic models called $\mathbb{T}$-Stochastic Graphs which impose no topological restrictions on the latent hierarchy. To illustrate this model, we propose six alternative forms of hierarchical network models and then show that all six are equivalent to the $\mathbb{T}$-Stochastic Graph model. These alternative models motivate a novel approach to hierarchical clustering that combines spectral techniques with the well-known Neighbor-Joining algorithm from phylogenetic reconstruction. We prove this spectral approach is statistically consistent.

Summary

We haven't generated a summary for this paper yet.