Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AlphaZero Gomoku (2309.01294v1)

Published 4 Sep 2023 in cs.AI and cs.LG

Abstract: In the past few years, AlphaZero's exceptional capability in mastering intricate board games has garnered considerable interest. Initially designed for the game of Go, this revolutionary algorithm merges deep learning techniques with the Monte Carlo tree search (MCTS) to surpass earlier top-tier methods. In our study, we broaden the use of AlphaZero to Gomoku, an age-old tactical board game also referred to as "Five in a Row." Intriguingly, Gomoku has innate challenges due to a bias towards the initial player, who has a theoretical advantage. To add value, we strive for a balanced game-play. Our tests demonstrate AlphaZero's versatility in adapting to games other than Go. MCTS has become a predominant algorithm for decision processes in intricate scenarios, especially board games. MCTS creates a search tree by examining potential future actions and uses random sampling to predict possible results. By leveraging the best of both worlds, the AlphaZero technique fuses deep learning from Reinforcement Learning with the balancing act of MCTS, establishing a fresh standard in game-playing AI. Its triumph is notably evident in board games such as Go, chess, and shogi.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.