The Normal Distributions Indistinguishability Spectrum and its Application to Privacy-Preserving Machine Learning (2309.01243v3)
Abstract: Differential Privacy (DP) (and its variants) is the most common method for ML on privacy-sensitive data. In big data analytics, one often uses randomized sketching/aggregation algorithms to make processing high-dimensional data tractable. Intuitively, such ML algorithms should provide some inherent privacy, yet most existing DP mechanisms do not leverage or under-utilize this inherent randomness, resulting in potentially redundant noising. The motivating question of our work is: (How) can we improve the utility of DP mechanisms for randomized ML queries, by leveraging the randomness of the query itself? Towards a (positive) answer, our key contribution is (proving) what we call the NDIS theorem, a theoretical result with several practical implications. In a nutshell, NDIS is a closed-form analytic computation for the (varepsilon,delta)-indistinguishability-spectrum (IS) of two arbitrary normal distributions N1 and N2, i.e., the optimal delta (for any given varepsilon) such that N1 and N2 are (varepsilon,delta)-close according to the DP distance. The importance of the NDIS theorem lies in that (1) it yields efficient estimators for IS, and (2) it allows us to analyze DP-mechanism with normally-distributed outputs, as well as more general mechanisms by leveraging their behavior on large inputs. We apply the NDIS theorem to derive DP mechanisms for queries with normally-distributed outputs--i.e., Gaussian Random Projections (RP)--and for more general queries--i.e., Ordinary Least Squares (OLS). Compared to existing techniques, our new DP mechanisms achieve superior privacy/utility trade-offs by leveraging the randomness of the underlying algorithms. We then apply the NDIS theorem to a data-driven DP notion--in particular relative DP introduced by Lu et al. [S&P 2024]. Our method identifies the range of (varepsilon,delta) for which no additional noising is needed.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.