Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Normal Distributions Indistinguishability Spectrum and its Application to Privacy-Preserving Machine Learning (2309.01243v3)

Published 3 Sep 2023 in cs.CR and cs.LG

Abstract: Differential Privacy (DP) (and its variants) is the most common method for ML on privacy-sensitive data. In big data analytics, one often uses randomized sketching/aggregation algorithms to make processing high-dimensional data tractable. Intuitively, such ML algorithms should provide some inherent privacy, yet most existing DP mechanisms do not leverage or under-utilize this inherent randomness, resulting in potentially redundant noising. The motivating question of our work is: (How) can we improve the utility of DP mechanisms for randomized ML queries, by leveraging the randomness of the query itself? Towards a (positive) answer, our key contribution is (proving) what we call the NDIS theorem, a theoretical result with several practical implications. In a nutshell, NDIS is a closed-form analytic computation for the (varepsilon,delta)-indistinguishability-spectrum (IS) of two arbitrary normal distributions N1 and N2, i.e., the optimal delta (for any given varepsilon) such that N1 and N2 are (varepsilon,delta)-close according to the DP distance. The importance of the NDIS theorem lies in that (1) it yields efficient estimators for IS, and (2) it allows us to analyze DP-mechanism with normally-distributed outputs, as well as more general mechanisms by leveraging their behavior on large inputs. We apply the NDIS theorem to derive DP mechanisms for queries with normally-distributed outputs--i.e., Gaussian Random Projections (RP)--and for more general queries--i.e., Ordinary Least Squares (OLS). Compared to existing techniques, our new DP mechanisms achieve superior privacy/utility trade-offs by leveraging the randomness of the underlying algorithms. We then apply the NDIS theorem to a data-driven DP notion--in particular relative DP introduced by Lu et al. [S&P 2024]. Our method identifies the range of (varepsilon,delta) for which no additional noising is needed.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube