Papers
Topics
Authors
Recent
2000 character limit reached

An analysis of Ermakov-Zolotukhin quadrature using kernels (2309.01200v1)

Published 3 Sep 2023 in math.NA, cs.NA, and stat.CO

Abstract: We study a quadrature, proposed by Ermakov and Zolotukhin in the sixties, through the lens of kernel methods. The nodes of this quadrature rule follow the distribution of a determinantal point process, while the weights are defined through a linear system, similarly to the optimal kernel quadrature. In this work, we show how these two classes of quadrature are related, and we prove a tractable formula of the expected value of the squared worst-case integration error on the unit ball of an RKHS of the former quadrature. In particular, this formula involves the eigenvalues of the corresponding kernel and leads to improving on the existing theoretical guarantees of the optimal kernel quadrature with determinantal point processes.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.