Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Noise robust speech emotion recognition with signal-to-noise ratio adapting speech enhancement (2309.01164v1)

Published 3 Sep 2023 in eess.AS, cs.LG, and cs.SD

Abstract: Speech emotion recognition (SER) often experiences reduced performance due to background noise. In addition, making a prediction on signals with only background noise could undermine user trust in the system. In this study, we propose a Noise Robust Speech Emotion Recognition system, NRSER. NRSER employs speech enhancement (SE) to effectively reduce the noise in input signals. Then, the signal-to-noise-ratio (SNR)-level detection structure and waveform reconstitution strategy are introduced to reduce the negative impact of SE on speech signals with no or little background noise. Our experimental results show that NRSER can effectively improve the noise robustness of the SER system, including preventing the system from making emotion recognition on signals consisting solely of background noise. Moreover, the proposed SNR-level detection structure can be used individually for tasks such as data selection.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.