Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distributed averaging for accuracy prediction in networked systems (2309.01144v1)

Published 3 Sep 2023 in eess.SY, cs.DC, and cs.SY

Abstract: Distributed averaging is among the most relevant cooperative control problems, with applications in sensor and robotic networks, distributed signal processing, data fusion, and load balancing. Consensus and gossip algorithms have been investigated and successfully deployed in multi-agent systems to perform distributed averaging in synchronous and asynchronous settings. This study proposes a heuristic approach to estimate the convergence rate of averaging algorithms in a distributed manner, relying on the computation and propagation of local graph metrics while entailing simple data elaboration and small message passing. The protocol enables nodes to predict the time (or the number of interactions) needed to estimate the global average with the desired accuracy. Consequently, nodes can make informed decisions on their use of measured and estimated data while gaining awareness of the global structure of the network, as well as their role in it. The study presents relevant applications to outliers identification and performance evaluation in switching topologies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.