Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimizing Mobile-Edge AI-Generated Everything (AIGX) Services by Prompt Engineering: Fundamental, Framework, and Case Study (2309.01065v2)

Published 3 Sep 2023 in cs.NI

Abstract: As the next-generation paradigm for content creation, AI-Generated Content (AIGC), i.e., generating content automatically by Generative AI (GAI) based on user prompts, has gained great attention and success recently. With the ever-increasing power of GAI, especially the emergence of Pretrained Foundation Models (PFMs) that contain billions of parameters and prompt engineering methods (i.e., finding the best prompts for the given task), the application range of AIGC is rapidly expanding, covering various forms of information for human, systems, and networks, such as network designs, channel coding, and optimization solutions. In this article, we present the concept of mobile-edge AI-Generated Everything (AIGX). Specifically, we first review the building blocks of AIGX, the evolution from AIGC to AIGX, as well as practical AIGX applications. Then, we present a unified mobile-edge AIGX framework, which employs edge devices to provide PFM-empowered AIGX services and optimizes such services via prompt engineering. More importantly, we demonstrate that suboptimal prompts lead to poor generation quality, which adversely affects user satisfaction, edge network performance, and resource utilization. Accordingly, we conduct a case study, showcasing how to train an effective prompt optimizer using ChatGPT and investigating how much improvement is possible with prompt engineering in terms of user experience, quality of generation, and network performance.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.