Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Regularly Truncated M-estimators for Learning with Noisy Labels (2309.00894v1)

Published 2 Sep 2023 in cs.LG and cs.AI

Abstract: The sample selection approach is very popular in learning with noisy labels. As deep networks learn pattern first, prior methods built on sample selection share a similar training procedure: the small-loss examples can be regarded as clean examples and used for helping generalization, while the large-loss examples are treated as mislabeled ones and excluded from network parameter updates. However, such a procedure is arguably debatable from two folds: (a) it does not consider the bad influence of noisy labels in selected small-loss examples; (b) it does not make good use of the discarded large-loss examples, which may be clean or have meaningful information for generalization. In this paper, we propose regularly truncated M-estimators (RTME) to address the above two issues simultaneously. Specifically, RTME can alternately switch modes between truncated M-estimators and original M-estimators. The former can adaptively select small-losses examples without knowing the noise rate and reduce the side-effects of noisy labels in them. The latter makes the possibly clean examples but with large losses involved to help generalization. Theoretically, we demonstrate that our strategies are label-noise-tolerant. Empirically, comprehensive experimental results show that our method can outperform multiple baselines and is robust to broad noise types and levels.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.