Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Certified Probabilistic Robustness with High Accuracy (2309.00879v1)

Published 2 Sep 2023 in cs.LG

Abstract: Adversarial examples pose a security threat to many critical systems built on neural networks (such as face recognition systems, and self-driving cars). While many methods have been proposed to build robust models, how to build certifiably robust yet accurate neural network models remains an open problem. For example, adversarial training improves empirical robustness, but they do not provide certification of the model's robustness. On the other hand, certified training provides certified robustness but at the cost of a significant accuracy drop. In this work, we propose a novel approach that aims to achieve both high accuracy and certified probabilistic robustness. Our method has two parts, i.e., a probabilistic robust training method with an additional goal of minimizing variance in terms of divergence and a runtime inference method for certified probabilistic robustness of the prediction. The latter enables efficient certification of the model's probabilistic robustness at runtime with statistical guarantees. This is supported by our training objective, which minimizes the variance of the model's predictions in a given vicinity, derived from a general definition of model robustness. Our approach works for a variety of perturbations and is reasonably efficient. Our experiments on multiple models trained on different datasets demonstrate that our approach significantly outperforms existing approaches in terms of both certification rate and accuracy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.